Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(3): 1541-1569, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263330

RESUMO

To globally profile circRNAs, we employ RNA-Sequencing paired with chimeric junction analysis for alpha-, beta-, and gamma-herpesvirus infection. We find circRNAs are, as a population, resistant to host shutoff. We validate this observation using ectopic expression assays of human and murine herpesvirus endoribonucleases. During lytic infection, four circRNAs are commonly induced across all subfamilies of human herpesviruses, suggesting a shared mechanism of regulation. We test one such mechanism, namely how interferon-stimulation influences circRNA expression. 67 circRNAs are upregulated by either interferon-ß or -γ treatment, with half of these also upregulated during lytic infection. Using gain and loss of function studies we find an interferon-stimulated circRNA, circRELL1, inhibits lytic Herpes Simplex Virus-1 infection. We previously reported circRELL1 inhibits lytic Kaposi sarcoma-associated herpesvirus infection, suggesting a pan-herpesvirus antiviral activity. We propose a two-pronged model in which interferon-stimulated genes may encode both mRNA and circRNA with antiviral activity. This is critical in cases of host shutoff, such as alpha- and gamma-herpesvirus infection, where the mRNA products are degraded but circRNAs escape.


Assuntos
Herpes Simples , Herpesviridae , Humanos , Camundongos , Animais , RNA Circular , Interferons , RNA Mensageiro , Simplexvirus , Antivirais
2.
bioRxiv ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37886542

RESUMO

A first line of defense during infection is expression of interferon (IFN)-stimulated gene products which suppress viral lytic infection. To combat this, herpesviruses express endoribonucleases to deplete host RNAs. Here we demonstrate that IFN-induced circular RNAs (circRNAs) can escape viral-mediated degradation. We performed comparative circRNA expression profiling for representative alpha- (Herpes simplex virus-1, HSV-1), beta- (human cytomegalovirus, HCMV), and gamma-herpesviruses (Kaposi sarcoma herpesvirus, KSHV; murine gamma-herpesvirus 68, MHV68). Strikingly, we found that circRNAs are, as a population, resistant to host shutoff. This observation was confirmed by ectopic expression assays of human and murine herpesvirus endoribonucleases. During primary lytic infection, ten circRNAs were commonly regulated across all subfamilies of human herpesviruses, suggesting a common mechanism of regulation. We tested one such mechanism, namely how interferon-stimulation influences circRNA expression. 67 circRNAs were upregulated by either IFN-ß or -γ treatment, with half of these also upregulated during lytic infection. Using gain and loss of function studies we found an interferon-stimulated circRNA, circRELL1, inhibited lytic HSV-1 infection. We have previously reported circRELL1 inhibits lytic KSHV infection, suggesting a pan-herpesvirus antiviral activity. We propose a two-pronged model in which interferon-stimulated genes may encode both mRNA and circRNA with antiviral activity. This is critical in cases of host shutoff, such as alpha- and gamma-herpesvirus infection, where the mRNA products are degraded but circRNAs escape.

3.
Cancer Res Commun ; 3(10): 2014-2029, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732899

RESUMO

African American (AA) women have an excessive risk of developing triple-negative breast cancer (TNBC). We employed Assay for Transposase-Accessible Chromatin using sequencing to characterize differences in chromatin accessibility between nine commonly used TNBC cell lines derived from patients of European and African ancestry. Principal component and chromosome mapping analyses of accessibility peaks with the most variance revealed separation of chromatin profiles by patient group. Motif enrichment and footprinting analyses of disparate open chromatin regions revealed differences in transcription factor activity, identifying 79 with ancestry-associated binding patterns (FDR < 0.01). AA TNBC cell lines exhibited increased accessibility for 62 transcription factors associated with epithelial-to-mesenchymal transition, cancer stemness/chemotherapeutic resistance, proliferation, and aberrant p53 regulation, as well as KAISO, which has been previously linked to aggressive tumor characteristics in AA patients with cancer. Differential Assay for Transposase-Accessible Chromatin signal analysis identified 1,596 genes located within promoters of differentially open chromatin regions in AA-derived TNBC, identifying DNA methyltransferase 1 as the top upregulated gene associated with African ancestry. Pathway analyses with these genes revealed enrichment in several pathways, including hypoxia. Culturing cells under hypoxia showed ancestry-specific stress responses that led to the identification of a core set of AA-associated transcription factors, which included members of the Kruppel-like factor and Sp subfamilies, as well as KAISO, and identified ZDHHC1, a gene previously implicated in immunity and STING activation, as the top upregulated AA-specific gene under hypoxia. Together, these data reveal a differential chromatin landscape in TNBC associated with donor ancestry. The open chromatin structure of AA TNBC may contribute to a more lethal disease. SIGNIFICANCE: We identify an ancestry-associated open chromatin landscape and related transcription factors that may contribute to aggressive TNBC in AA women. Furthermore, this study advocates for the inclusion of diversely sourced cell lines in experimental in vitro studies to advance health equity at all levels of scientific research.

4.
Nat Immunol ; 24(8): 1331-1344, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37443284

RESUMO

CD4+ T helper 17 (TH17) cells protect barrier tissues but also trigger autoimmunity. The mechanisms behind these opposing processes remain unclear. Here, we found that the transcription factor EGR2 controlled the transcriptional program of pathogenic TH17 cells in the central nervous system (CNS) but not that of protective TH17 cells at barrier sites. EGR2 was significantly elevated in myelin-reactive CD4+ T cells from patients with multiple sclerosis and mice with autoimmune neuroinflammation. The EGR2 transcriptional program was intricately woven within the TH17 cell transcriptional regulatory network and showed high interconnectivity with core TH17 cell-specific transcription factors. Mechanistically, EGR2 enhanced TH17 cell differentiation and myeloid cell recruitment to the CNS by upregulating pathogenesis-associated genes and myelomonocytic chemokines. T cell-specific deletion of Egr2 attenuated neuroinflammation without compromising the host's ability to control infections. Our study shows that EGR2 regulates tissue-specific and disease-specific functions in pathogenic TH17 cells in the CNS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Diferenciação Celular , Sistema Nervoso Central , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Células Th1 , Células Th17 , Fatores de Transcrição , Virulência , Humanos
5.
Proc Natl Acad Sci U S A ; 120(6): e2212864120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36724259

RESUMO

Non-coding RNAs (ncRNAs) play important roles in host-pathogen interactions; oncogenic viruses like Kaposi's sarcoma herpesvirus (KSHV) employ ncRNAs to establish a latent reservoir and persist for the life of the host. We previously reported that KSHV infection alters a novel class of RNA, circular RNAs (circRNAs). CircRNAs are alternative splicing isoforms and regulate gene expression, but their importance in infection is largely unknown. Here, we showed that a human circRNA, hsa_circ_0001400, is induced by various pathogenic viruses, namely KSHV, Epstein-Barr virus, and human cytomegalovirus. The induction of circRNAs including circ_0001400 by KSHV is co-transcriptionally regulated, likely at splicing. Consistently, screening for circ_0001400-interacting proteins identified a splicing factor, PNISR. Functional studies using infected primary endothelial cells revealed that circ_0001400 inhibits KSHV lytic transcription and virus production. Simultaneously, the circRNA promoted cell cycle, inhibited apoptosis, and induced immune genes. RNA-pull down assays identified transcripts interacting with circ_0001400, including TTI1, which is a component of the pro-growth mTOR complexes. We thus identified a circRNA that is pro-growth and anti-lytic replication. These results support a model in which KSHV induces circ_0001400 expression to maintain latency. Since circ_0001400 is induced by multiple viruses, this novel viral strategy may be widely employed by other viruses.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 8 , Infecção Latente , Vírus de RNA , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , RNA Circular/genética , Sarcoma de Kaposi/genética , Células Endoteliais , Latência Viral/genética , Herpesvirus Humano 4/genética , RNA Viral/genética , RNA não Traduzido , Vírus de RNA/genética , Replicação Viral/genética , Regulação Viral da Expressão Gênica
6.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898422

RESUMO

The composition of the human vaginal microbiome has been extensively studied and is known to influence reproductive health. However, the functional roles of individual taxa and their contributions to negative health outcomes have yet to be well characterized. Here, we examine two vaginal bacterial taxa grouped within the genus Megasphaera that have been previously associated with bacterial vaginosis (BV) and pregnancy complications. Phylogenetic analyses support the classification of these taxa as two distinct species. These two phylotypes, Megasphaera phylotype 1 (MP1) and Megasphaera phylotype 2 (MP2), differ in genomic structure and metabolic potential, suggestive of differential roles within the vaginal environment. Further, these vaginal taxa show evidence of genome reduction and changes in DNA base composition, which may be common features of host dependence and/or adaptation to the vaginal environment. In a cohort of 3870 women, we observed that MP1 has a stronger positive association with bacterial vaginosis whereas MP2 was positively associated with trichomoniasis. MP1, in contrast to MP2 and other common BV-associated organisms, was not significantly excluded in pregnancy. In a cohort of 52 pregnant women, MP1 was both present and transcriptionally active in 75.4 % of vaginal samples. Conversely, MP2 was largely absent in the pregnant cohort. This study provides insight into the evolutionary history, genomic potential and predicted functional role of two clinically relevant vaginal microbial taxa.


Assuntos
Proteínas de Bactérias/genética , Megasphaera/classificação , Análise de Sequência de DNA/métodos , Vagina/microbiologia , Vaginose Bacteriana/epidemiologia , Composição de Bases , Estudos de Casos e Controles , Evolução Molecular , Feminino , Regulação Bacteriana da Expressão Gênica , Tamanho do Genoma , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Megasphaera/genética , Megasphaera/isolamento & purificação , Megasphaera/metabolismo , Filogenia , Gravidez , RNA Ribossômico 16S/genética , Saúde Reprodutiva , Vaginose Bacteriana/microbiologia
7.
Cell Death Dis ; 12(11): 1038, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725321

RESUMO

Cancer cells experience endoplasmic reticulum (ER) stress due to activated oncogenes and conditions of nutrient deprivation and hypoxia. The ensuing unfolded protein response (UPR) is executed by ATF6, IRE1 and PERK pathways. Adaptation to mild ER stress promotes tumor cell survival and aggressiveness. Unmitigated ER stress, however, will result in cell death and is a potential avenue for cancer therapies. Because of this yin-yang nature of ER stress, it is imperative that we fully understand the mechanisms and dynamics of the UPR and its contribution to the complexity of tumor biology. The PERK pathway inhibits global protein synthesis while allowing translation of specific mRNAs, such as the ATF4 transcription factor. Using thapsigargin and tunicamycin to induce acute ER stress, we identified the transcription factor C/EBPδ (CEBPD) as a mediator of PERK signaling to secretion of tumor promoting chemokines. In melanoma and breast cancer cell lines, PERK mediated early induction of C/EBPδ through ATF4-independent pathways that involved at least in part Janus kinases and the STAT3 transcription factor. Transcriptional profiling revealed that C/EBPδ contributed to 20% of thapsigargin response genes including chaperones, components of ER-associated degradation, and apoptosis inhibitors. In addition, C/EBPδ supported the expression of the chemokines CXCL8 (IL-8) and CCL20, which are known for their tumor promoting and immunosuppressive properties. With a paradigm of short-term exposure to thapsigargin, which was sufficient to trigger prolonged activation of the UPR in cancer cells, we found that conditioned media from such cells induced cytokine expression in myeloid cells. In addition, activation of the CXCL8 receptor CXCR1 during thapsigargin exposure supported subsequent sphere formation by cancer cells. Taken together, these investigations elucidated a novel mechanism of ER stress-induced transmissible signals in tumor cells that may be particularly relevant in the context of pharmacological interventions.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Quimiocina CCL20/metabolismo , Estresse do Retículo Endoplasmático , Imunomodulação , Interleucina-8/metabolismo , Transdução de Sinais , eIF-2 Quinase/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/genética , Linhagem Celular Tumoral , Quimiocina CCL20/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunomodulação/efeitos dos fármacos , Interleucina-8/genética , Janus Quinases/metabolismo , Modelos Biológicos , Comunicação Parácrina/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tapsigargina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética
8.
Front Microbiol ; 12: 670542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276603

RESUMO

Multiple herpesviruses have been recently found to encode viral circular RNAs. Like cellular circular RNAs, these RNAs lack poly-A tails and their 5' and 3' ends have been joined, which confers protection from RNA exonucleases. We examined the expression patterns of circular RNAs from Kaposi's sarcoma herpesvirus (KSHV) in various environments. We performed deep sequencing of circRNA-enriched total RNA from a KSHV-positive patient lymph node for comparison with previous circRNA-Seq results. We found that circvIRF4 is highly expressed in the KSHV-positive patient sample relative to both B cell lines and de novo infected primary vascular and lymphatic endothelial cells (LECs). Overall, this patient sample showed a viral circRNA expression pattern more similar to the pattern from B cell lines, but we also discovered new back-spliced junctions and additional viral circular RNAs in this patient sample. We validated some of these back-spliced junctions as circular RNAs with standard assays. Differential expression patterns of circular RNAs in different cell types led us to investigate what cellular factors might be influencing the ratio of viral linear mRNAs to circular RNAs. We found that repression of certain RNA-binding proteins shifted the balance between viral linear mRNAs and circular RNAs. Taken together, examining viral circular RNA expression patterns may become useful tools for discovering their functions, the regulators of their expression, and determining the stage and cell types of infection in humans.

9.
Methods ; 196: 129-137, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33713796

RESUMO

Circular forms of RNA were first discovered in plant viroids and later found in a variety of animal viruses. These circular RNAs lack free 5' and 3' ends, granting protection from exonucleases. This review is focused on the methods that are used to investigate virus-encoded circular RNAs. Using DNA viruses that are prevalent among human as examples, we begin with features of circular RNAs and the unique methods to enrich for circular RNAs. Next, we discuss the computational methods for RNA-sequencing analysis to discover new virus-encoded circular RNAs. Many strategies are similar to analyzing cellular RNAs, but some unique aspects of virus-encoded circular RNAs that are likely due to highly packed viral genomes and non-canonical use of splicing machinery, are described herein. We illustrate the various methods of validating expression of specific virus-encoded circular RNAs. Finally, we discuss novel methods to study functions of circular RNAs and the current technical challenges that remain for investigating virus-encoded circular RNAs.


Assuntos
RNA Circular , Vírus , Animais , Vírus de DNA/genética , Splicing de RNA/genética , RNA Circular/genética , RNA Viral/genética , Vírus/genética
10.
J Immunol ; 206(3): 494-504, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33318291

RESUMO

The expression and turnover of Ag-specific peptide-MHC class II (pMHC-II) on the surface of dendritic cells (DCs) is essential for their ability to efficiently activate CD4 T cells. Ubiquitination of pMHC-II by the E3 ubiquitin ligase March-I regulates surface expression and survival of pMHC-II in DCs. We now show that despite their high levels of surface pMHC-II, MHC class II (MHC-II) ubiquitination-deficient mouse DCs are functionally defective; they are poor stimulators of naive CD4 T cells and secrete IL-12 in response to LPS stimulation poorly. MHC-II ubiquitination-mutant DC defects are cell intrinsic, and single-cell RNA sequencing demonstrates that these DCs have an altered gene expression signature as compared with wild-type DCs. Curiously, these functional and gene transcription defects are reversed by activating the DCs with LPS. These results show that dysregulation of MHC-II turnover suppresses DC development and function.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apresentação de Antígeno , Antígenos/metabolismo , Diferenciação Celular , Células Cultivadas , Antígenos de Histocompatibilidade Classe II/metabolismo , Interleucina-12/metabolismo , Ativação Linfocitária/genética , Camundongos , Camundongos Knockout , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
11.
Mol Carcinog ; 59(7): 679-690, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31912614

RESUMO

The immune-suppressive tumor microenvironment promotes metastatic spread and outgrowth. One of the major contributors is tumor-associated myeloid cells. However, the molecular mechanisms regulating their differentiation and function are not well understood. Here we report lamin A/C, a nuclear lamina protein associated with chromatin remodeling, was one of the critical regulators in cellular reprogramming of tumor-associated myeloid cells. Using myeloid-specific lamin A/C knockout mice and triple-negative breast cancer (TNBC) mouse models, we discovered that the loss of lamin A/C drives CD11b+ Ly6G+ granulocytic lineage differentiation, alters the production of inflammatory chemokines, decreases host antitumor immunity, and increases metastasis. The underlying mechanisms involve an increased H3K4me3 leading to the upregulation of transcription factors (TFs) Gfi-1 and C/EBPε. Decreased lamin A/C and increased Gfi-1 and C/EBPε were also found in the granulocytic subset in the peripheral blood of human cancer patients. Our data provide a mechanistic understanding of myeloid lineage differentiation and function in the immune-suppressive microenvironment in TNBC metastasis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular/genética , Lamina Tipo A/genética , Neoplasias Pulmonares/genética , Células Mieloides/patologia , Metástase Neoplásica/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Animais , Células Cultivadas , Quimiocinas/genética , Modelos Animais de Doenças , Feminino , Granulócitos/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Leucócitos Mononucleares/patologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Metástase Neoplásica/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética , Regulação para Cima/genética
12.
Nat Med ; 25(6): 1012-1021, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31142849

RESUMO

The incidence of preterm birth exceeds 10% worldwide. There are significant disparities in the frequency of preterm birth among populations within countries, and women of African ancestry disproportionately bear the burden of risk in the United States. In the present study, we report a community resource that includes 'omics' data from approximately 12,000 samples as part of the integrative Human Microbiome Project. Longitudinal analyses of 16S ribosomal RNA, metagenomic, metatranscriptomic and cytokine profiles from 45 preterm and 90 term birth controls identified harbingers of preterm birth in this cohort of women predominantly of African ancestry. Women who delivered preterm exhibited significantly lower vaginal levels of Lactobacillus crispatus and higher levels of BVAB1, Sneathia amnii, TM7-H1, a group of Prevotella species and nine additional taxa. The first representative genomes of BVAB1 and TM7-H1 are described. Preterm-birth-associated taxa were correlated with proinflammatory cytokines in vaginal fluid. These findings highlight new opportunities for assessment of the risk of preterm birth.


Assuntos
Microbiota , Nascimento Prematuro/microbiologia , Vagina/microbiologia , Adulto , Negro ou Afro-Americano , Biodiversidade , Estudos de Coortes , Citocinas/metabolismo , Feminino , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Recém-Nascido , Mediadores da Inflamação/metabolismo , Estudos Longitudinais , Metagenômica , Microbiota/genética , Microbiota/imunologia , Nascimento Prematuro/etiologia , Nascimento Prematuro/imunologia , Fatores de Risco , Estados Unidos , Vagina/imunologia , Adulto Jovem
13.
Nat Med ; 25(6): 1001-1011, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31142850

RESUMO

The microbiome of the female reproductive tract has implications for women's reproductive health. We examined the vaginal microbiome in two cohorts of women who experienced normal term births: a cross-sectionally sampled cohort of 613 pregnant and 1,969 non-pregnant women, focusing on 300 pregnant and 300 non-pregnant women of African, Hispanic or European ancestry case-matched for race, gestational age and household income; and a longitudinally sampled cohort of 90 pregnant women of African or non-African ancestry. In these women, the vaginal microbiome shifted during pregnancy toward Lactobacillus-dominated profiles at the expense of taxa often associated with vaginal dysbiosis. The shifts occurred early in pregnancy, followed predictable patterns, were associated with simplification of the metabolic capacity of the microbiome and were significant only in women of African or Hispanic ancestry. Both genomic and environmental factors are likely contributors to these trends, with socioeconomic status as a likely environmental influence.


Assuntos
Microbiota , Gravidez/fisiologia , Vagina/microbiologia , Adulto , Negro ou Afro-Americano , Biodiversidade , Estudos de Coortes , Estudos Transversais , Feminino , Hispânico ou Latino , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Microbiota/genética , Microbiota/fisiologia , Classe Social , População Branca
14.
Proc Natl Acad Sci U S A ; 115(50): 12805-12810, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30455306

RESUMO

Noncoding RNAs have substantial effects in host-virus interactions. Circular RNAs (circRNAs) are novel single-stranded noncoding RNAs which can decoy other RNAs or RNA-binding proteins to inhibit their functions. The role of circRNAs is largely unknown in the context of Kaposi's sarcoma herpesvirus (KSHV). We hypothesized that circRNAs influence viral infection by inhibiting host and/or viral factors. Transcriptome analysis of KSHV-infected primary endothelial cells and a B cell line identified human circRNAs that are differentially regulated upon infection. We confirmed the expression changes with divergent PCR primers and RNase R treatment of specific circRNAs. Ectopic expression of hsa_circ_0001400, a circRNA induced by infection, suppressed expression of key viral latent gene LANA and lytic gene RTA in KSHV de novo infections. Since human herpesviruses express noncoding RNAs like microRNAs, we searched for viral circRNAs encoded in the KSHV genome. We performed circRNA-Seq analysis with RNase R-treated, circRNA-enriched RNA from KSHV-infected cells. We identified multiple circRNAs encoded by the KSHV genome that are expressed in KSHV-infected endothelial cells and primary effusion lymphoma (PEL) cells. The KSHV circRNAs are located within ORFs of viral lytic genes, are up-regulated upon the induction of the lytic cycle, and alter cell growth. Viral circRNAs were also detected in lymph nodes from patients of KSHV-driven diseases such as PEL, Kaposi's sarcoma, and multicentric Castleman's disease. We revealed new host-virus interactions of circRNAs: human antiviral circRNAs are activated in response to KSHV infection, and viral circRNA expression is induced in the lytic phase of infection.


Assuntos
Herpesvirus Humano 8/genética , RNA/genética , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/virologia , Linfócitos B/virologia , Hiperplasia do Linfonodo Gigante/genética , Hiperplasia do Linfonodo Gigante/virologia , Linhagem Celular , Células Endoteliais/virologia , Perfilação da Expressão Gênica/métodos , Regulação Viral da Expressão Gênica/genética , Genes Virais/genética , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Linfoma de Efusão Primária/genética , Linfoma de Efusão Primária/virologia , MicroRNAs/genética , Fases de Leitura Aberta/genética , RNA Circular , RNA Viral/genética
15.
BMC Genomics ; 19(1): 770, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355302

RESUMO

BACKGROUND: Trypanosoma conorhini and Trypanosoma rangeli, like Trypanosoma cruzi, are kinetoplastid protist parasites of mammals displaying divergent hosts, geographic ranges and lifestyles. Largely nonpathogenic T. rangeli and T. conorhini represent clades that are phylogenetically closely related to the T. cruzi and T. cruzi-like taxa and provide insights into the evolution of pathogenicity in those parasites. T. rangeli, like T. cruzi is endemic in many Latin American countries, whereas T. conorhini is tropicopolitan. T. rangeli and T. conorhini are exclusively extracellular, while T. cruzi has an intracellular stage in the mammalian host. RESULTS: Here we provide the first comprehensive sequence analysis of T. rangeli AM80 and T. conorhini 025E, and provide a comparison of their genomes to those of T. cruzi G and T. cruzi CL, respectively members of T. cruzi lineages TcI and TcVI. We report de novo assembled genome sequences of the low-virulent T. cruzi G, T. rangeli AM80, and T. conorhini 025E ranging from ~ 21-25 Mbp, with ~ 10,000 to 13,000 genes, and for the highly virulent and hybrid T. cruzi CL we present a ~ 65 Mbp in-house assembled haplotyped genome with ~ 12,500 genes per haplotype. Single copy orthologs of the two T. cruzi strains exhibited ~ 97% amino acid identity, and ~ 78% identity to proteins of T. rangeli or T. conorhini. Proteins of the latter two organisms exhibited ~ 84% identity. T. cruzi CL exhibited the highest heterozygosity. T. rangeli and T. conorhini displayed greater metabolic capabilities for utilization of complex carbohydrates, and contained fewer retrotransposons and multigene family copies, i.e. trans-sialidases, mucins, DGF-1, and MASP, compared to T. cruzi. CONCLUSIONS: Our analyses of the T. rangeli and T. conorhini genomes closely reflected their phylogenetic proximity to the T. cruzi clade, and were largely consistent with their divergent life cycles. Our results provide a greater context for understanding the life cycles, host range expansion, immunity evasion, and pathogenesis of these trypanosomatids.


Assuntos
Genoma de Protozoário , Genômica , Trypanosoma cruzi/genética , Trypanosoma rangeli/genética , Trypanosoma/genética , Biologia Computacional/métodos , Metabolismo Energético/genética , Genômica/métodos , Genótipo , Tipagem Molecular , Família Multigênica , Filogenia , Pseudogenes , Trypanosoma/classificação , Trypanosoma/metabolismo , Trypanosoma/patogenicidade , Trypanosoma cruzi/classificação , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidade , Trypanosoma rangeli/classificação , Trypanosoma rangeli/metabolismo , Trypanosoma rangeli/patogenicidade , Virulência/genética
16.
Oncotarget ; 9(26): 18454-18479, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29719618

RESUMO

We report a novel mechanism of action of ONC201 as a mitochondria-targeting drug in cancer cells. ONC201 was originally identified as a small molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL) and subsequently kills cancer cells by activating TRAIL death receptors. In this study, we examined ONC201 toxicity on multiple human breast and endometrial cancer cell lines. ONC201 attenuated cell viability in all cancer cell lines tested. Unexpectedly, ONC201 toxicity was not dependent on either TRAIL receptors nor caspases. Time-lapse live cell imaging revealed that ONC201 induces cell membrane ballooning followed by rupture, distinct from the morphology of cells undergoing apoptosis. Further investigation found that ONC201 induces phosphorylation of AMP-dependent kinase and ATP loss. Cytotoxicity and ATP depletion were significantly enhanced in the absence of glucose, suggesting that ONC201 targets mitochondrial respiration. Further analysis indicated that ONC201 indirectly inhibits mitochondrial respiration. Confocal and electron microscopic analysis demonstrated that ONC201 triggers mitochondrial structural damage and functional impairment. Moreover, ONC201 decreased mitochondrial DNA (mtDNA). RNAseq analysis revealed that ONC201 suppresses expression of multiple mtDNA-encoded genes and nuclear-encoded mitochondrial genes involved in oxidative phosphorylation and other mitochondrial functions. Importantly, fumarate hydratase deficient cancer cells and multiple cancer cell lines with reduced amounts of mtDNA were resistant to ONC201. These results indicate that cells not dependent on mitochondrial respiration are ONC201-resistant. Our data demonstrate that ONC201 kills cancer cells by disrupting mitochondrial function and further suggests that cancer cells that are dependent on glycolysis will be resistant to ONC201.

17.
PLoS One ; 12(8): e0178763, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28800601

RESUMO

Human cytomegalovirus (hCMV) reactivation may often coincide with the development of graft-versus-host-disease (GVHD) in stem cell transplantation (SCT). Seventy seven SCT donor-recipient pairs (DRP) (HLA matched unrelated donor (MUD), n = 50; matched related donor (MRD), n = 27) underwent whole exome sequencing to identify single nucleotide polymorphisms (SNPs) generating alloreactive peptide libraries for each DRP (9-mer peptide-HLA complexes); Human CMV CROSS (Cross-Reactive Open Source Sequence) database was compiled from NCBI; HLA class I binding affinity for each DRPs HLA was calculated by NetMHCpan 2.8 and hCMV- derived 9-mers algorithmically compared to the alloreactive peptide-HLA complex libraries. Short consecutive (≥6) amino acid (AA) sequence homology matching hCMV to recipient peptides was considered for HLA-bound-peptide (IC50<500nM) cross reactivity. Of the 70,686 hCMV 9-mers contained within the hCMV CROSS database, an average of 29,658 matched the MRD DRP alloreactive peptides and 52,910 matched MUD DRP peptides (p<0.001). In silico analysis revealed multiple high affinity, immunogenic CMV-Human peptide matches (IC50<500 nM) expressed in GVHD-affected tissue-specific manner. hCMV+GVHD was found in 18 patients, 13 developing hCMV viremia before GVHD onset. Analysis of patients with GVHD identified potential cross reactive peptide expression within affected organs. We propose that hCMV peptide sequence homology with human alloreactive peptides may contribute to the pathophysiology of GVHD.


Assuntos
Citomegalovirus/metabolismo , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/virologia , Antígenos HLA/química , Peptídeos/química , Homologia de Sequência de Aminoácidos , Células Clonais , Biologia Computacional , Reações Cruzadas/imunologia , Humanos , Mimetismo Molecular , Proteoma/metabolismo , Linfócitos T/citologia , Proteínas Virais/metabolismo
18.
BMC Bioinformatics ; 17(1): 491, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905885

RESUMO

BACKGROUND: Recent advances in next-generation sequencing have revolutionized genomic research. 16S rRNA amplicon sequencing using paired-end sequencing on the MiSeq platform from Illumina, Inc., is being used to characterize the composition and dynamics of extremely complex/diverse microbial communities. For this analysis on the Illumina platform, merging and quality filtering of paired-end reads are essential first steps in data analysis to ensure the accuracy and reliability of downstream analysis. RESULTS: We have developed the Merging and Filtering Tool (MeFiT) to combine these pre-processing steps into one simple, intuitive pipeline. MeFiT invokes CASPER (context-aware scheme for paired-end reads) for merging paired-end reads and provides users the option to quality filter the reads using the traditional average Q-score metric or using a maximum expected error cut-off threshold. CONCLUSIONS: MeFiT provides an open-source solution that permits users to merge and filter paired end illumina reads. The tool has been implemented in python and the source-code is freely available at https://github.com/nisheth/MeFiT .


Assuntos
Genes Bacterianos , Genes de RNAr , Genômica/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Software , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
19.
Microbiology (Reading) ; 162(3): 466-475, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747455

RESUMO

Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( <1% 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12% 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively.


Assuntos
Variação Genética , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Microbiota , Vagina/microbiologia , Vaginose Bacteriana/microbiologia , Bacteriófagos/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Feminino , Genoma Bacteriano , Humanos , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Análise de Sequência de DNA
20.
Biol Blood Marrow Transplant ; 22(5): 850-61, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26688192

RESUMO

Immune reconstitution kinetics and subsequent clinical outcomes in HLA-matched recipients of allogeneic stem cell transplantation (SCT) are variable and difficult to predict. Considering SCT as a dynamical system may allow sequence differences across the exomes of the transplant donors and recipients to be used to simulate an alloreactive T cell response, which may allow better clinical outcome prediction. To accomplish this, whole exome sequencing was performed on 34 HLA-matched SCT donor-recipient pairs (DRPs) and the nucleotide sequence differences translated to peptides. The binding affinity of the peptides to the relevant HLA in each DRP was determined. The resulting array of peptide-HLA binding affinity values in each patient was considered as an operator modifying a hypothetical T cell repertoire vector, in which each T cell clone proliferates in accordance with the logistic equation of growth. Using an iterating system of matrices, each simulated T cell clone's growth was calculated with the steady-state population being proportional to the magnitude of the binding affinity of the driving HLA-peptide complex. Incorporating competition between T cell clones responding to different HLA-peptide complexes reproduces a number of features of clinically observed T cell clonal repertoire in the simulated repertoire, including sigmoidal growth kinetics of individual T cell clones and overall repertoire, Power Law clonal frequency distribution, increase in repertoire complexity over time with increasing clonal diversity, and alteration of clonal dominance when a different antigen array is encountered, such as in SCT. The simulated, alloreactive T cell repertoire was markedly different in HLA-matched DRPs. The patterns were differentiated by rate of growth and steady-state magnitude of the simulated T cell repertoire and demonstrate a possible correlation with survival. In conclusion, exome wide sequence differences in DRPs may allow simulation of donor alloreactive T cell response to recipient antigens and may provide a quantitative basis for refining donor selection and titration of immunosuppression after SCT.


Assuntos
Exoma , Modelos Genéticos , Receptores de Antígenos de Linfócitos T/genética , Transplante de Células-Tronco , Linfócitos T , Doadores de Tecidos , Adulto , Aloenxertos , Feminino , Estudo de Associação Genômica Ampla , Antígenos HLA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...